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Abstract

This report presents the implementation of a model that detects and treats collisions
between particles undergoing a diffusive trajectory. The main motivation is to simulate the
Brownian motion that particles undergo and account for the potential collision that may occur
inbetween a time step, something a classical ballistic model fails to do. The collision event is
determined via a probability calculated based on relative and final positions of the two particles.
This project is intended to be a simulation of the first step of agglomeration and is to be paired
with another model that simulates the second step: formation of a larger particle from two
smaller particles.

I. INTRODUCTION

Collision detection is a popular physics and computational geometry problem that
occurs in our daily lives, ranging from particles to pool balls to cars. Collision detection
is applicable in computer graphics, computer simulations, and computational physics. The
collisions of particles is the initial step in the process of agglomeration, the formation
of larger particles upon collision and adhesion of two smaller particles [1]. Examples
of agglomeration include formation of clouds, formation of bioagreggates in wastewater,
and formation of planets. The collision step of agglomeration deals with particle-fluid
interactions — particle-particle encounters and the time and location of their collision
[1].

The motivation behind this project is to introduce a stochastic approach to simulate
the collision step of agglomeration useful for situations where a numerical or analytical
method does not exist. This approach considers the random and continuous of a particle’s
trajectory over a large time step and evaluates the probability of it interacting with another
particle as well as both of their resulting trajectories. Provided that a collision occurs, the
model then addresses when the collision occurs, where it takes place, and the resulting
motion of the two particles.

II. RELATED WORK

A. Stochastic Approach
This project focuses on the model developed by Henry et al. in 2014 [1] which

implements the model outlined in Mohaupt et al. in 2011 [2], a stochastic model to
evaluate collisions between particles undergoing Brownian motion.

III. ALGORITHM IMPLEMENTATION

The following equations (Eq.(1), (2), (3), (4), (6), (5), (7)) are all derived by Henry et
al. [1].
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Particle motion

Particle motion is expressed by

Xp(t+∆t) = Xp(t) +Bx

√
∆tξx (1)

where Xp is the particle location, ∆t is the time step of the simulation, Bx is the diffusion
coefficient, and ξx is an independent vector of random variables sampled in a standard
normal distribution. It is to be noted that this equation is valid only when ∆t ≫ τp
where τp is the particle relaxation time. In this scenario, the fluid velocity is either at rest
or disregarded and Eq. (1) is a simplified approach to particle motion. This simplified
approach allows for a reasonable first step in building the simulation model.

Detection of collision

The next step is to determine if a collision occurs between a pair of particles given only
their initial and final positions of the time step. This detection is determined stochastically
and simulates the diffusive trajectories of the pair of particles as their paths follow random
motion instead of straight lines. The formula to determine the probability of the collision
is given by:

P b
a(Rij) =

exp
(

2Rij(a+b−Rij)

B2
x,ij∆t

)
− 1

exp
(

2ab
B2

x,ij∆t

)
− 1

(2)

where Rij = Ri+Rj , a and b are the initial and final relative positions of the two particles,
respectively, and B2

x,ij = B2
x,i + B2

x,j . If a or b are less than the minimum threshold of
Rij , then the particles overlap at the beginning or end of the time step and therefore the
collision probability is equal to 1. Afterwards, the collision between the pair of particles is
then simulated by a Monte Carlo method such that given λ, a uniformly random sampled
number between 0 and 1, if P b

a(Rij) ≥ λ, the collision occurs. Otherwise, it does not.

Time of collision

Given that a collision has occurred, the cumulative distribution function for the collision
time tc is F (q) = P b

a(tc < q|tc < ∆t) given by :

F (q) =



0 ifq ≤ 0

1
2

1− I1−I2−I3+I4

exp

(
−

(a+b−2Rij)
2

2B2
x,ij

∆t

)
−exp

(
− (a+b)2

2B2
x,ij

∆t

)
 0 ≤ q ≤ ∆t

1 ifq ≥ ∆t

(3)
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with 
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Location of collision
The location of where the two particles collide is dependent on the barycentre (centre

of gravity) Xg of the collision. The barycentre also follows a Brownian motion with
diffusion coefficient Bx.g equal to

B2
x,g =

(
mp,iBx,i

mp,i +mp,j

)2

+

(
mp,jBx,j

mp,i +mp,j

)2

(5)

Then Xc, the location of the collision, is given by a sample from the normal distribution:

Xc,α = N (XM,α, σ
2
M) (6)

where mean XM = Xg(t) + [Xg(t+∆t)−Xg(t)]tc/∆t and variance σ2
M = B2

x,gtc(∆t−
tc)/∆t.

Modified particle motion
Provided a collision has occurred, the positions of each of the two particles involved

at the end of the time step must be calculated and updated.

Xp,i(t+∆t) = Xp,i(t+ tc) +Bx,i

√
∆t− tcξ

′
x (7)

where ξ′x is another vector of independent random variables sampled in a standard normal
distribution. Note that the position of only one particle is updated. The second particle,
according to Henry et al., does not need to be updated [1].

Model
The algorithm used to detect and treat particle collisions is described in [1] and shown

schematically in Fig. 1. For each t ime step, to summarize, Eq. (1) is first used to calculate
the motion of N particles in a three-dimensional space. Next, for each pair of particles,
the probability of a collision occuring is calculated using Eq. (2). Then, the collision
probablities are ranked in decreasing order and are each treated. The collision time is
found via Eq. (3) and subsequently, the collision location via Eq. (6). Finally, the particle
positions are modified via Eq. (7). After each collision is treated, we advance the time
step by ∆t.
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Fig. 1. Flowchart for algorithm of detecting and treating particle collisions.

The model was then implemented in MATLAB. Subsequent diagrams were produced
in MATLAB.
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IV. RESULTS AND DISCUSSION

Fig.2 show an example of the Brownian path a single particle undergoes.
Fig. 3 shows an example of a simulation involving three particles. Graphed are the

position paths of the three particles.

Fig. 2. Diagram of a singular particle Brownian motion path with radius R = 10−6m, ∆t = 10−4s, and Bx =
10−4m · s−1/2

(a) (b)

Fig. 3. (a) Position graphs of simulation of three particles with radius R = 10−6m, ∆t = 10−4s, and Bx =
10−4m · s−1/2 (b) Close-up image of the two collisions occuring in the simulation
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Future Improvements

Fig. 4. Diagram of ten particles’ motions with radius R = 10−6m, ∆t = 10−4s, and Bx = 10−4m · s−1/2

Fig. 4 shows the simulation of ten particles under 500 timesteps for a total time of
0.05s. Two collisions occur.

Fig. 5 shows the computation time of the MATLAB implementation. The computation
time almost scales linearly with the total number of timesteps used. Further improvements
to efficiency can be made. Currently, a naive algorithm is used to check every particle
against every other particle. This results in O(n2) cost.

One limitation of plotting the position paths of each particle is that it is difficult
to verify whether the collision calculated and drawn is correct. It is evident when a
collision occurs (Fig. 3 (b)), however, the implementation offers no way of seeing where
the original final position was calculated to be.

Furthermore, MATLAB does not support arbitrary CDFs, making computing the
collision time with Eq. (3) impossible. The collision time was instead computed as
tc = λ∆t where λ is a random number sampled uniformly between 0 and 1.
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Fig. 5. Computation time of different number of maximum time steps

Limitations
One limitation that this model faces is that it is only able to assess a single collision

per pair of particles for each time step. One solution that Henry et al. suggests in [1]
to account for the possibility of multiple collisions between the same pair of particles
in a single time step is to introduce sub-time steps. The algorithm would be modified
to recaluclate the collision probability with other pairs in the remaining time after the
initial collision has occurred.

Another next step is that the model is only valid for a time step ∆t where it is much
larger than τp (i.e. ∆t ≃ 100τp. In scenarios where this constraint is not present, Eq. (1)
is no longer valid to calculate a particle’s motion. Instead, the following equation has
been suggested to be used instead:

Xp(t+∆t) = Xp(t) + Up(t)τp(1− e−∆t/τp) + Us(t)[∆t− τp(1− e−∆t/τp)]

+Bvτp

√
∆t− 2τp

(1−e−∆t/τp )

(1+e−∆t/τp )
+Bvτ

2
p

(1−e−∆t/τp )2√
2τp(1−e−2∆t/τp )

ξu

Up(t+∆t) = Up(t)e
−∆t/τp + Us(t)e

−∆t/τp +Bv

√
τp
2
(1− e−2∆t/τp)ξu

(8)

where Up is the particle’s velocity, Us is the fluid velocity, and ξu and ξv are independent
vectors of random variables sampled in a standard normal distribution. Furthermore, the
collision probability step would have to be modified to account for the initial and final
relative velocities.

V. CONCLUSION

This project implements the stochastic method to detect and treat diffusive particle
collisions described in Henry et al.’s paper [1]. The project outlines the limitations of
classical models that do not account for potential collisions between time steps and
accounts for the entire diffusive and relative trajectories of these particles. The results
obtained showcase the Brownian motion paths of the particles in the simulation and their
collisions, if any.

This method is a beginning step and leaves the door open to further advancements
and improvements mentioned in the ’Limitations’ section. It presents the first step of
agglomeration and is to be coupled with the second step of formation of larger particles.

7



REFERENCES
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